Relativitätstheorie relativ anschaulich

Tempolimit Lichtgeschwindigkeit

Die Computersimulationen

Eine Beschreibung verschiedener Verfahren zur Computersimulation schnellbewegter Objekte gibt Weiskopf [6]. Hier möchten wir das raumzeitliche Ray-Tracing herausgreifen und kurz erläutern, weil es wegen seiner universellen Anwendbarkeit besonders wichtig ist.

Bei der Ray-Tracing-Methode wird das Bildfeld in einzelne Pixel aufgeteilt. Zu jedem Pixel bestimmt man den Richtungsvektor des Lichtstrahls, der durch das Objektiv auf diesen Punkt trifft. Dieser Lichtstrahl wird nun von der Kameraposition aus rückwärts verfolgt. Trifft er auf ein Objekt, dann erhält das Pixel, von dem man gestartet ist, die Farbe des Objekts am Auftreffpunkt. In „normalen“ Computergrafikanwendungen kann die Lichtlaufzeit im Vergleich zu den Bewegungen der Objekte bzw. der Kamera vernachlässigt werden. Es genügt daher im dreidimensionalen Raum die Schnittpunkte der Lichtstrahlen mit statischen Objekten zu suchen. Für relativistische Simulationen wird das Ray-Tracing auf eine vierdimensionale Raumzeit erweitert, indem jeder Lichtstrahl im Raum und in der Zeit rückwärts verfolgt wird. Dabei wird nach Schnittereignissen gesucht, d. h. nach Orten und Zeiten des Zusammentreffens von Lichtstrahlen und Objekten.

Zur Berechnung von Farbe und Helligkeit von Objekten muss das emittierte Spektrum (genauer: die spektrale Strahldichte, auch als spezifische Intensität bezeichnet) an jedem Punkt der Objektoberfläche bekannt sein. Für jeden Punkt auf der Bildfläche wird das eintreffende Spektrum ins Ruhesystem der Kamera transformiert und mit Hilfe der experimentell ermittelten Gesetze der Farbmetrik in einen Farbeindruck umgerechnet.

 
weiter...

Hinzufügen zu: facebook google+ digg StumpleUpon

Kontakt: Möchten Sie über Neuigkeiten informiert werden oder uns eine Nachricht senden?

Umfrage: Wie nutzen Sie unsere Seite und wie soll sie sich weiterentwickeln?

AutorInnen: Ute Kraus, Hanns Ruderexterner Link, Daniel Weiskopfexterner Link, Corvin Zahn, Datum: 25.05.2002
Impressum.
All contents copyright (C) 2001-2014 Ute Kraus, Corvin Zahn. All rights reserved. Näheres siehe Copyright.